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Abstract
Point defects such as interstitials, vacancies and impurities in otherwise perfect crystals induce
complex displacement fields that are of long-range nature. In the present paper we study
numerically the response of a two-dimensional colloidal crystal on a triangular lattice to the
introduction of an interstitial particle. While far from the defect position the resulting
displacement field is accurately described by linear elasticity theory, lattice effects dominate in
the vicinity of the defect. In comparing the results of particle-based simulations with continuum
theory, it is crucial to employ corresponding boundary conditions in both cases. For the periodic
boundary condition used here, the equations of elasticity theory can be solved in a consistent
way with the technique of Ewald summation familiar from the electrostatics of periodically
replicated systems of charges and dipoles. Very good agreement of the displacement fields
calculated in this way with those determined in particle simulations is observed for distances of
more than about ten lattice constants. Closer to the interstitial, strongly anisotropic
displacement fields with exponential behavior can occur for certain defect configurations. Here
we rationalize this behavior with a simple bead spring that relates the exponential decay
constant to the elastic constants of the crystal.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The properties of crystalline substances often crucially
depend on the structure and dynamics of imperfections of
the crystal lattice. In particular, point defects such as
interstitials and vacancies play a pivotal role in determining
the stability, transport properties, growth characteristics
and mechanical behavior of materials. Recent impressive
experimental advances, such as optical tweezers and confocal
microscopy [1, 2], now permit us to study the fundamental
properties of point defects in condensed matter systems with
‘atomistic’ space and time resolution.

Recently, a number of experimental studies have fo-
cused on the structure and dynamics of point defects in two-
dimensional assemblies of micrometer-sized colloidal par-
ticles [3–5] and, in particular, on their effective interac-
tions [6–8]. In studying such defect interactions the question
arises to which degree they can be rationalized in terms of con-
tinuum elastic theory. As a first step towards answering this
question, in this paper we investigate numerically the distur-
bances caused by isolated interstitial particles and compare the
results with the predictions of continuum theory. In carrying

out such a comparison, it proves crucial that, in solving the
equations of elasticity theory, boundary conditions are used
that match those of the simulations. For the periodic bound-
ary conditions usually applied in computer simulations, the
displacement fields of single defects can be determined using
the technique of Ewald summation familiar from electrostat-
ics [9, 10]. While elasticity theory properly describes the dis-
turbances and interactions created by lattice imperfections on
a larger scale, discrete lattice effects dominate on spatial scales
of the order of a few lattice constants.

The remainder of this paper is organized as follows. In
section 2 we define the model and describe the numerical
methods. The treatment of point defects in a two-dimensional
elastic continuum is discussed in section 3 and comparison
with the numerical results is discussed in section 4. For certain
defect configurations one observes an exponential rather than
algebraic decay of the displacement fields. This behavior
can be understood in terms of a simple bead-spring model
introduced in section 5 with parameters related to the elastic
constants of the material. Some concluding remarks are
provided in section 6.
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2. Simulations

In this paper we study a two-dimensional crystal of soft
particles interacting via the Gaussian potential [12–14]

v(r) = ε exp(−r 2/σ 2), (1)

where r is the interparticle distance, and ε and σ set the energy
and length scales, respectively. In the following, energies are
measured in units of ε and distances in units of σ . This so-
called Gaussian core model, used here as a generic model
for a system of soft spheres, is a realistic description for the
short-ranged effective interactions between polymer coils in
solution [15]. In three dimensions, the Gaussian core model
can exist as a fluid, a bcc and an fcc solid, depending on
temperature and density [13]. In two dimensions, the perfect
triangular lattice is the lowest energy structure of Gaussian core
particles at all densities [16]. Computer simulations indicate
that also in this system of purely repulsive particles point
defects such as interstitials, vacancies or impurity particles
of different sizes display attractive (as well as repulsive)
interactions both in two and three dimensions [17].

To study the displacement field of a single interstitial
numerically, we prepare a configuration of particles arranged
on the sites of a perfect lattice configuration and insert an extra
particle of the same species. After insertion, the system is
relaxed to a new minimum energy configuration by steepest
descent minimization, i.e. we study the defect structure at
T = 0. Typically, 70 000 steepest descent steps are carried
out. The system we study here consists of N = 199 680
Gaussian core particles (without the extra particle) at a number
density of ρ = 0.6σ−2 corresponding to a lattice constant
a = (2/

√
3ρ)1/2 = 1.3872σ . Periodic boundary conditions

apply to the simulation box of length Lx = 416a and height
L y = (

√
3/2)480 a = 415.692a. The aspect ratio of the

almost square simulation box is L y/Lx = 0.999 26.
We quantify the perturbation caused by the defect in terms

of the displacement field [18]

u(ri ) ≡ r′
i − ri . (2)

Here, r′
i and ri denote the position of particle i with and

without the defect, respectively. As we will see in the following
sections, simple point defects generate remarkably intricate
displacement patterns that can be understood in terms of
elasticity theory only on large length scales.

At T = 0, the elastic constants describing the macroscopic
response of the system to perturbations can be calculated as a
function of density from simple lattice sums. For a density of
ρ = 0.6σ 2, the Lamé coefficients (see section 3) of the perfect
triangular lattice have values λ = 1.1487 εσ−2 and μ =
0.060 18 εσ−2. At this density, the pressure is p = 0.5442 εσ

and the energy density is e = 0.2691 εσ−2 corresponding to
an energy per particle of E/N = 0.4485ε. The bulk modulus,
which in two dimensions is related to the Lamé coefficients by
K = λ + μ, has a value of K = 1.2089εσ−2.

3. Elasticity theory

While close to a point defect the displacement field is highly
anisotropic and strongly dependent on the atomistic details
of the interactions, for large distances elasticity theory is
expected to be valid. The differential equations describing the
equilibrium of an elastic continuum are usually expressed in
terms of the strain tensor [18]

εi j(r) = 1

2

(
∂ui

∂r j
+ ∂u j

∂ri

)
, (3)

where ui denotes the i th component of the displacement u and
ri the i th component of the position r. For a given external
volume force f(r) with components fi acting on an isotropic
system such as a crystal on a triangular lattice, Hook’s law
leads to the equilibrium condition for the strain:

λ
∂

∂ri
εkk + 2μ

∂εi j

∂r j
+ fi = 0. (4)

Here, λ and μ are the so-called Lamé coefficients and
summation over repeated indices is implied. Solving this
equation for a singular force yields the Green’s function from
which the response of the elastic continuum to an arbitrary
force can be obtained by integration.

To model the displacement field caused by the introduc-
tion of point defects using linear continuum elasticity theory,
we determine the displacement field caused by two pairs of op-
posing forces, one pair acting along the x axis and the other
one along the y axis [19–21]. This idealized model of a defect
is equivalent to inserting a small circular inclusion into a hole
of different size [20]. Each force of this pair is of equal magni-
tude F but with opposite sign acting on two points separated by
a small distance h. Such a force pair exerts a zero net force on
the material. In the limit h → 0, where the force F → ∞ in a
way such that Fh remains constant, the equilibrium condition
for the displacement can be written as

(λ + 2μ)
∂u j

∂r j
= Fhδ(r). (5)

Assuming that the displacement can be written as the derivative
of a potential:

ui = ∂φ

∂ri
(6)

one obtains

	

(
−λ + 2μ

Fh
φ

)
= −δ(r). (7)

This equation is the Poisson equation of electrostatics with
a singular disturbance. Since, as noted above, K (r) =
− ln(r)/2π is a solution of 	K = −δ(r) (see, for
instance, [22]), we obtain the Green’s function

φ(r) = Fh

2π(λ + 2μ)
ln(r) (8)

from which the displacement field u(r) follows by differentia-
tion according to equation (6):

ui = Fh

2π(λ + 2μ)

ri

r 2
. (9)
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In comparing the results of particle simulations with
those of elasticity theory it is important to realize that the
displacement fields predicted by continuum theory are of a
long-range nature. Therefore, it is crucial that corresponding
boundary conditions are used in both cases. All simulations
discussed in this paper are done with periodic boundary
conditions in order to minimize surface effects and preserve
the translational invariance of the perfect lattice. Hence,
the continuum calculations also need to be carried out with
periodic boundary conditions.

Since the defect fields for the infinite material are long-
ranged, the displacement field in the periodic system cannot
be obtained by simply summing up the contributions of the
periodic images. In fact, such a naive summation of the
contribution of all image defects diverges. A more appropriate
treatment that avoids this problem consists in determining
the Green’s function of the Poisson equation (7) for periodic
boundary conditions. In this case, the solution of this equation
in two dimensions, known from electrostatics [9, 10], can be
written as the Ewald sum of a logarithmic potential embedded
in a neutralizing background [11]:

φ(r) = Fh

2π(λ + 2μ)

{
1

2

∑
l

Ei [−η2|r + l|2]

− 2π

A

∑
k �=0

e−k2/4η2

k2
cos(k · r) + π

2η2 A

}
. (10)

Here, Ei(x) = ∫ x
−∞(et/t) dt is the exponential integral. The

first sum is over all lattice vectors l in real space and the
second sum is over all reciprocal vectors k in Fourier space.
The adjustable parameter η, set to a value of η = 6/Lx here,
determines the rate of convergence of the two sums and A is the
area of the rectangular simulation cell. The Fourier space sum
can be evaluated accurately using about 2500 reciprocal space
vectors. From equation (10) for the scalar function φ(r) the
displacement field of a point defect in a system with periodic
boundary conditions is found by differentiation:

ui(r) = Fh

2π(λ + 2μ)

{∑
l

e−η2 |r+l|2 ri + li

|r + l|2

+ 2π

A

∑
k �=0

e−k2/4η2

k2
ki sin(k · r)

}
. (11)

For the systems considered in this paper, the real space
sum may be truncated after the first term. Since the value
of Fh/2π(λ + 2μ) is undetermined, the parameter γ ≡
Fh/2π(λ + 2μ) is treated as a fit parameter in the following.
The Ewald sums of the above equations describe the effects
of ‘image defects’ at the center of the periodically replicated
domains.

4. Results

First, we study the displacement field of a single interstitial.
To generate such a defect, we insert an extra particle of the
same species into a perfect 2d crystal on a triangular lattice.
After insertion, the system is relaxed to a new minimum energy
configuration by steepest descent minimization, i.e. we study

the defect structure at T = 0. Typically, 70 000 steepest
descent steps are carried out. In each step each particle is
moved in the direction of the force acting on the particle where
the absolute value of the displacement is chosen to be small
enough to ensure that the energy of the system decreases in
each step.

The extra particle can deform the crystal in different
ways [4] and produces displacement fields of different
symmetries (see figure 1). In one configuration, called I2

interstitial or crowdion and shown in figure 1(a), the additional
particle pushes one particular particle of the crystal out of
its equilibrium position. Both the original particle and the
additional particle arrange themselves at equal distance around
the lattice position of the original particle. The displacement
pattern arising for this type of interstitial has twofold symmetry
and, of course, occurs in all three low-index lattice directions
with equal probability. One may suspect that this defect
configuration, with a symmetry that differs from the symmetry
of the underlying triangular lattice, is caused by the rectangular
periodic boundary conditions that are applied to the system. To
rule out this possibility, we have repeated the calculation with
hexagonal periodic boundary conditions, obtaining the same
result.

Another low-energy defect configuration is the I3

interstitial with threefold symmetry (see figure 1(b)). In
this case the interstitial particle is located at the center of
a basic lattice triangle and pushes its neighbors outward
from their original positions. A third important interstitial
configuration is the Id interstitial or dumbbell interstitial shown
in figure 1(c). In the 2d Gaussian core model under the
conditions studied here the I2 pattern has a slightly lower
energy than the I3 interstitial and the Id interstitial. The energy
difference between an I2 and an I3 interstitial is 0.000 674ε

and the difference between I2 and Id is 0.000 665ε. All
three displacement patterns are important for the diffusion of
interstitials. An I2 interstitial is very mobile in the direction of
its main axis. The I3 and Id forms are visited as intermediate
configurations when the I2 interstitial changes the orientation
of its main axis and hence its direction of motion [23]. We
note that very similar interstitial configurations are found for
systems with other particle interaction potentials such as 1/r 3

and Yukawa [23].
Next, we compare the displacement fields determined

numerically with the predictions of elasticity theory. In
particular, we verify to which extent the 1/r behavior
modulated by the periodic boundary conditions and embodied
in equation (11) is realized in the particle system. The complex
displacement patterns of the various interstitial configurations
shown in figure 1 obviously differ from this expectation, at
least near the defect, and indicate that continuum theory is
not applicable in this region. Far away from the defect,
however, the perturbation caused by the defect is small and
the response of the material should be described accurately by
linear elasticity theory.

The magnitude |u(r)| of the displacement vector u(r)
is shown as a function of the distance from the interstitial
in figure 2 for the I2 defect configuration. Each point
in the figure corresponds to one individual particle. For
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(a) (b) (c)

Figure 1. Displacement fields (top) and local defect configurations (bottom) for the I2 (a), the I3 (b) and the Id (c) configurations. The length
of the arrows representing the displacements of the particles from their position in the perfect lattice are exaggerated for better visibility. In
the figures at the bottom the large spheres represent the particles and the small spheres indicate the position of the lattice sites of the perfect
crystal.

Figure 2. Displacement magnitude |u(r)| as a function of distance
from the defect r for the I2 interstitial. Each dot corresponds to one
particle. The solid line represents the γ /r behavior. Here,
γ = 0.2291σ 2 was used as this value yields the best fit of the results
obtained vie Ewald summation to the results of the particle
simulations in the far field. Inset: angle θ between the displacement
vector u and the position vectors r as a function of the distance r
from the defect site.

short distances, the displacement magnitude is not a
unique function of the distance r , reflecting the anisotropic
nature of the defect. For larger distances, however, the
displacement magnitude is mostly determined by the distance
r . Eventually, however, the periodic boundary conditions lead
to a spread of the displacement magnitude for even larger
distances and a splitting into two branches corresponding
to the x and y directions and the directions along the
diagonals, respectively. In the regime where u(r) behaves
isotropically, the displacement follows the approximately
1/r form predicted by elasticity theory for a point defect

in an infinitely extended medium. The orientation of the
displacement vector u(r), depicted in the inset of figure 2,
behaves in an analogous way. The angle θ between u(r) and
the position vector r, shown as a function of the distance r from
the defect, is not a unique function of r near the defect. For
larger r , θ vanishes, indicating that, in this distance regime,
the displacement vector points straight away from the defect.
At even larger distances, the periodic boundary conditions
imposed on the system eventually cause the angle θ to spread
again.

The displacement fields calculated according to equa-
tion (11) and numerically for an interstitial in the I2 config-
uration are compared in figure 3. In this figure, the displace-
ment components ux and uy are depicted as a function of the
distance from the defect along the x axis and y axis, respec-
tively. The prediction of continuum theory, calculated using
the Ewald summation of equation (11), agrees well with the
displacement field of the particle system for distances larger
than about ten lattice constants.

5. Harmonic model

Near the defect, the predictions of continuum theory differ
from the simulation results. The deviation is particularly
pronounced in the direction of the main axis of distortion of
the I2 defect, in which the displacement appears to decay
exponentially up to a distance of about ≈10 a. This unexpected
exponential behavior can be understood in terms of a simple
model with harmonic interactions. This model consists of a
one-dimensional chain of particles in which each particle is
connected to its two neighbors with springs of force constant
k1 (except the first and last particle, which are coupled only to

4
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Figure 3. Displacement components ux and uy of the I2 interstitial
as a function of the distance along the x axis and y axis, respectively
(solid lines). Here, the direction of the largest displacement of the I2

defect is oriented in the x direction. Also plotted is the displacement
computed from continuum theory according to equation (11) (dashed
line), simple 1/r behavior (dotted line) and the displacement
obtained for the simple mechanical model described in the main text
(dashed–dotted line). The inset shows the region close to the defect
location. As in figure 2 a defect strength of γ = 0.2291σ 2 was used
for the evaluation of the displacement from elasticity theory.

their neighbors on the right and left, respectively). In addition,
each particle is attached to a fixed lattice position with another
spring of force constant k2. The Hamiltonian of this system is

H = k1

2

N∑
j=0

(x j+1 − x j − b)2 + k2

2

N+1∑
j=0

(x j − bj)2, (12)

where N + 2 is the number of particles, x j is the position
of particle j and b is the equilibrium distance between two
neighboring particles. In the minimum energy configuration of
this chain, the particles are arranged such that x j = bj . We
now imagine that particle 0 is pushed to the right by a distance
of u0 while particle N + 1 is kept fixed at xN+1 = (N + 1)b.
If the system is then relaxed to a new energy minimum, all
other particles will be displaced from their original positions
too. For this simple model, the response of the system to the
displacement of the first particle can be calculated analytically
by direct matrix inversion (see the appendix). In the large N
limit, one finds that the displacement of the particles from their
original position decays exponentially with their position:

u j = u0 exp(−α j), (13)

where u j is the displacement of particle j due to the forced
displacement u0 of the first particle. The decay constant α is
related to the force constants of the model by

α = cosh−1

(
1 + k2

2k1

)
. (14)

To compare the prediction of this simple model with the
simulation results we have to determine the force constants
k1 and k2 felt by the particles in the main axis of the defect.
While the force constant k1 arises from interactions within this
main axis, the force constant k2 is related to interactions of
the particles in the main axis with those from adjacent rows.

Accordingly, we determine k1 by calculating numerically the
energy change caused by slightly displacing one single particle
in a one-dimensional row of otherwise fixed Gaussian core
particles without the presence of the neighboring rows. The
distance of the particles in the row is chosen to be equal to
the lattice constant at the density ρ = 0.6σ−2 considered
throughout the paper. From the energy as a function of the
displacement one obtains a force constant of k1 = 0.015ε/σ 2.
To determine the force constant k2 we calculate the energy
change caused by translating a whole row of particles in the
perfect crystal. The particles in the row are fixed with respect
to each other and the remaining particles are kept at their
lattice positions. From the energy change per moved particle
a force constant of k2 = 0.0013ε/σ 2 follows. The decay
constant of α = 0.29 calculated according to equation (14)
with these force constants is in perfect agreement with the
computer simulation results shown in figure 3.

For a system in which only nearest-neighbor interactions
are important, the force constants k1 and k2 can be simply
related to the bulk modulus K and the shear modulus μ. Then,
the force constant k1 is given by

k1 = 2v′′(a), (15)

where v(a) is the pair potential at distance a. Since in this case
the elastic moduli are given by

K =
√

3

2

{
v′′(a) − v(a)

a

}
(16)

and

μ =
√

3

4

{
v′′(a) + 3

v(a)

a

}
(17)

one obtains

k1 = 2√
3

(
μ + 3K

2

)
. (18)

To the extent that the response of the system to shear is
determined by the interaction of neighboring parallel rows of
particles, the energy density caused by shifting a whole row of
atoms between two fixed ones is the same as that of a shear of
appropriate magnitude. Accordingly, the force constant k2 is
related to the shear modulus by

k2 = 4√
3
μ. (19)

This expression also remains valid if interactions beyond
nearest neighbors are included between adjacent rows of
particles. In terms of the elastic constants, the constant α

describing the exponential decay of the displacement field
along the principal axis can be expressed as

α = cosh−1

(
1 + 2μ

2μ + 3K

)
, (20)

or, in terms of the Poisson ratio ν,

α = cosh−1

(
7 − ν

5 + ν

)
. (21)

5
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For a density of ρ = 0.6σ−2, inserting the Poisson ratio of
ν = 0.905 151 determined from a simple lattice sum yields
α ≈ 0.25, only slightly different from the correct value α ≈
0.29. This deviation occurs because, in the Gaussian core
model at the density ρ = 0.6σ−2, interactions between non-
nearest-neighbor particles are important in determining the
elastic constants (in fact, considering only nearest neighbors
would produce a negative shearing modulus μ in this case).
For systems in which only nearest-neighbor interactions are
relevant, the above expression is expected to hold accurately.

6. Conclusion

Point defects in two-dimensional crystals, such as interstitials
and vacancies, can assume configurations with symmetries
that vary from the symmetry of the underlying triangular
lattice. While close to the defect the displacement field is
highly anisotropic and strongly dependent on the atomistic
details of the interactions, for large distances elasticity
theory, which predicts isotropic behavior, is valid. For
the particular I2 interstitial configuration, the displacement
decreases exponentially with distance along the main defect
axis. The decay constant is simply related to the material
properties via the Poisson ratio, which measures the ratio
between transversal and axial strain upon stretching. In
comparing the displacement fields computed from particle
simulations with those obtained from continuum elasticity
theory it is crucial to use equivalent boundary conditions in
both cases. Since particle simulations are usually carried out
with periodic boundary conditions, the differential equations
of elasticity theory also need to be solved for a periodic
system. We have shown here that Ewald summation, a
technique routinely used in computer simulations to determine
the electrostatic interactions of charges and dipoles, can be
used for this purpose. In this method the sum over all
interactions with periodic image defects is split into two sums
in real space and reciprocal space, respectively. This particular
treatment of the long-ranged nature of displacement fields
effectively introduces a neutralizing background that leads to
convergent sums. Note that exactly the same expressions
apply also to a system that is enclosed in a rigid container.
Outside a core region near the defect, displacement patterns
determined using such Ewald summation agree perfectly with
those calculated in particle simulations. Carrying out an
analogous comparison of computer simulation results with the
predictions of continuum elasticity theory in three-dimensional
colloidal crystals does not pose any additional complications
compared to the 2d case. We will perform such studies in future
work.
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Neumann and Andreas Tröster for useful discussions. This
research was supported by the University of Vienna through
the University Focus Research Area Materials Science (project
‘Multi-scale Simulations of Materials Properties and Processes
in Materials’).

Appendix

In this appendix we calculate the response at T = 0 of the
one-dimensional bead-spring model of section 5 to a forced
displacement of the first particle in the chain. The potential
energy of the N + 2 particles, located at positions x j , is given
by

H(x) = k1

2

N∑
j=0

(x j+1 − x j − b)2 + k2

2

N+1∑
j=0

(x j − bj)2, (A.1)

where b is the equilibrium distance, and k1 and k2 are force
constants. The vector x = x0, x1, . . . , xN+1 includes the
positions of all particles. Minimizing the potential energy with
respect to the particle positions x j by requiring that

∂H(x)

∂x j

∣∣∣∣
x=x

= 0 (A.2)

for all j , one finds that at the potential energy minimum the
particle positions are x j = bj . We now displace particle 0
by an amount u0 from its original position x0 = 0 and keep
particle N + 1 fixed at position (N + 1)b. If we hold particle 0
at this new position while minimizing the potential energy, all
particles from 1 to N will move to new equilibrium positions.
Thus, the minimum energy configuration of the system is a
function of the displacement u0 of particle 0, which may be
viewed as a parameter that is controlled externally and perturbs
the system. To make this distinction between the displacement
of particle 0 and that of all other particles more explicit, we
denote u0 by an extra symbol, ξ = u0. The displacement u j of
the particles j = 1, . . . , N is then a function of ξ :

u j (ξ) = x j(ξ) − x j(0), (A.3)

where x j (ξ) and x j(0) denote the particle position in the
minimum energy configuration with and without perturbation,
respectively. In the following, we will calculate the
displacements u j(ξ) as a function of the perturbation
strength ξ .

Since condition (A.2) defines the position of the energy
minimum as a function of the perturbation strength ξ , its
derivative with respect to ξ must vanish:

d

dξ

(
∂H(ξ)

∂x j

∣∣∣∣
x=x(ξ)

)
= 0. (A.4)

Application of the chain rule then leads to

∑
j

(
∂2H

∂x j ∂xi

∣∣∣∣
x=x(ξ)

)
∂x j (ξ)

∂ξ
+ ∂2H

∂ξ∂xi

∣∣∣∣
x=x(ξ)

= 0. (A.5)

This condition must hold for all i . Defining

z j ≡ ∂x j(ξ)

∂ξ
, (A.6)

Hi j ≡ − ∂2H
∂x j ∂xi

∣∣∣∣
x=x(ξ)

, (A.7)

6
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and

yi ≡ ∂2H
∂ξ∂xi

∣∣∣∣
x=x (ξ)

, (A.8)

we can rewrite equation (A.5) as

yi =
∑

j

Hi j z j . (A.9)

Inversion of the matrix Hi j then yields the vector z:

z j =
∑

i

H−1
j i yi . (A.10)

Once z j = ∂x j (ξ)/∂ξ is known, x j (ξ) can be obtained by
integration.

For the bead-spring model considered here, the first and
second derivatives of the potential energy with respect to the
particle coordinates are given by

∂H
∂xi

= (2k1 + k2)xi − k1xi+1 − k1xi−1 − k2bi, (A.11)

∂H
∂xi∂x j

=

⎧⎪⎨
⎪⎩

2k1 + k2 if i = j ,

−k1 if j = i + 1 or j = i − 1,

0 else,
(A.12)

and
∂H

∂xi∂ξ
=
{

−k1 if i = 1,

0 if i > 0.
(A.13)

To solve equation (A.10) we have to invert the symmetric
tridiagonal matrix Hi j . For this particular matrix, the inverse
matrix is known analytically [24]:

H−1
i j = − 1

2k1

{
cosh[(N + 1 − | j − i |)α]
sinh(α) sinh[(N + 1)α]

− cosh[(N + 1 − i − j)α]
sinh(α) sinh[(N + 1)α]

}
, (A.14)

where

α = cosh−1

(
1 + k2

2k1

)
. (A.15)

Since for our model y = {−k1, 0, 0, . . . , 0}, we obtain

∂x i

∂ξ
=
∑

j

H −1
i j y j = −H −1

i0 k1, (A.16)

and hence

∂xi

∂ξ
= cosh[(N + 2 − i)α] − cosh[(N − i)α]

2 sinh(α) sinh[(N + 1)α] . (A.17)

For large N , this equation simplifies to

∂xi

∂ξ
= exp(−iα). (A.18)

Integration with respect to ξ then yields

xi (ξ) = ξ exp(−iα) + Ci , (A.19)

where the integration constant is given by Ci = xi (0).
Thus, the displacement of particle j is proportional to the
displacement of particle 0 and decays exponentially with the
distance from the origin:

ui = u0 exp(−iα), (A.20)

with a decay constant α that depends on the force constants k1

and k2 only.
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